ollama quantize model to fp16
Full Example Code
import ollama
# Load the model
model_path = 'path/to/model.pt'
model = ollama.load_model(model_path)
# Create a QuantizationConfig
quant_config = ollama.QuantizationConfig(
precision=ollama.Precision.FP16,
weights_bits=8,
activation_bits=8,
batch_size=1 # adjust according to your model's requirements
)
# Initialize the Quantizer
quantizer = ollama.Quantizer(model, quant_config)
# Run Quantization
quantizer.run_quantization()
# Save the quantized model
model_path = 'path/to/model_fp16.pt'
ollama.save_model(model, model_path)
This code will load a trained neural network model, create a QuantizationConfig object to specify the
FP16 settings, initialize the Quantizer, run the quantization process, and finally save the quantized
model in FP16 format.
./llama-quantize --help
# from llamal.cpp